Formation Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
L'adaptation de faible rang (LoRA) est une technique de pointe qui permet d'affiner efficacement les modèles à grande échelle en réduisant les besoins en calcul et en mémoire des méthodes traditionnelles. Ce cours fournit des conseils pratiques sur l'utilisation de LoRA pour adapter des modèles pré-entraînés à des tâches spécifiques, ce qui en fait la solution idéale pour les environnements à ressources limitées.
Cette formation en direct (en ligne ou sur site) est destinée aux développeurs de niveau intermédiaire et aux praticiens de l'IA qui souhaitent mettre en œuvre des stratégies de réglage fin pour de grands modèles sans avoir besoin de ressources de calcul étendues.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes de l'adaptation de faible rang (LoRA).
- Mettre en œuvre la LoRA pour un réglage fin efficace des grands modèles.
- Optimiser le réglage fin pour les environnements à ressources limitées.
- Évaluer et déployer des modèles ajustés par LoRA pour des applications pratiques.
Format du cours
- Exposé et discussion interactifs.
- Beaucoup d'exercices et de pratique.
- Mise en œuvre pratique dans un environnement live-lab.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter.
Plan du cours
Introduction à l'adaptation de faible rang (LoRA)
- Qu'est-ce que la LoRA ?
- Avantages de la LoRA pour un réglage fin efficace
- Comparaison avec les méthodes traditionnelles de réglage fin
Comprendre les défis du réglage fin
- Limites du réglage fin traditionnel
- Contraintes de calcul et de mémoire
- Pourquoi LoRA est une alternative efficace
Mise en place de l'environnement
- Installation de Python et des bibliothèques nécessaires
- Mise en place des transformateurs Hugging Face et de PyTorch
- Exploration des modèles compatibles avec LoRA
Mise en œuvre de LoRA
- Vue d'ensemble de la méthodologie LoRA
- Adaptation de modèles pré-entraînés avec LoRA
- Ajustement fin pour des tâches spécifiques (par exemple, la classification de textes, le résumé)
Optimisation du réglage fin avec LoRA
- Réglage des hyperparamètres pour LoRA
- Évaluation des performances des modèles
- Minimiser la consommation de ressources
Travaux pratiques
- Optimisation de BERT avec LoRA pour la classification de textes
- Application de LoRA à T5 pour les tâches de résumé
- Exploration de configurations LoRA personnalisées pour des tâches uniques
Déploiement de modèles optimisés par LoRA
- Exporter et sauvegarder des modèles optimisés par LoRA
- Intégration des modèles LoRA dans les applications
- Déploiement de modèles dans des environnements de production
Techniques avancées de LoRA
- Combinaison de LoRA avec d'autres méthodes d'optimisation
- Mise à l'échelle de LoRA pour des modèles et des ensembles de données plus importants
- Explorer les applications multimodales avec LoRA
Défis et bonnes pratiques
- Éviter le surajustement avec LoRA
- Assurer la reproductibilité des expériences
- Stratégies de dépannage et de débogage
Tendances futures en matière de réglage fin efficace
- Innovations émergentes en matière de LoRA et de méthodes connexes
- Applications de LoRA dans le monde réel de l'IA
- Impact de la mise au point efficace sur le développement de l'IA
Résumé et prochaines étapes
Pré requis
- Compréhension de base des concepts d'apprentissage automatique
- Familiarité avec la programmation Python.
- Expérience avec des frameworks d'apprentissage profond comme TensorFlow ou PyTorch
Public
- Développeurs
- Praticiens de l'IA
Les formations ouvertes requièrent plus de 3 participants.
Formation Efficient Fine-Tuning with Low-Rank Adaptation (LoRA) - Booking
Formation Efficient Fine-Tuning with Low-Rank Adaptation (LoRA) - Enquiry
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA) - Demande d'informations consulting
Demande d'informations consulting
Cours à venir
Cours Similaires
Advanced Techniques in Transfer Learning
14 HeuresCette formation en direct avec instructeur en Canada (en ligne ou sur site) est destinée aux professionnels de l'apprentissage automatique de niveau avancé qui souhaitent maîtriser les techniques de pointe de l'apprentissage par transfert et les appliquer à des problèmes complexes du monde réel.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les concepts et méthodologies avancés de l'apprentissage par transfert.
- Mettre en œuvre des techniques d'adaptation spécifiques à un domaine pour les modèles pré-entraînés.
- Appliquer l'apprentissage continu pour gérer des tâches et des ensembles de données en constante évolution.
- Maîtriser le réglage fin multi-tâches pour améliorer les performances des modèles à travers les tâches.
Deploying Fine-Tuned Models in Production
21 HeuresCette formation en direct avec instructeur en Canada (en ligne ou sur place) est destinée aux professionnels de niveau avancé qui souhaitent déployer des modèles affinés de manière fiable et efficace.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les défis liés au déploiement de modèles finement ajustés en production.
- Conteneuriser et déployer des modèles en utilisant des outils comme Docker et Kubernetes.
- Mettre en œuvre la surveillance et la journalisation pour les modèles déployés.
- Optimiser les modèles pour la latence et l'extensibilité dans des scénarios réels.
Domain-Specific Fine-Tuning for Finance
21 HeuresCette formation en direct avec instructeur à Canada (en ligne ou sur place) est destinée aux professionnels de niveau intermédiaire qui souhaitent acquérir des compétences pratiques dans la personnalisation des modèles d'IA pour des tâches financières critiques.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les principes fondamentaux de la mise au point pour les applications financières.
- Exploiter des modèles pré-entraînés pour des tâches spécifiques au domaine de la finance.
- Appliquer des techniques de détection des fraudes, d'évaluation des risques et de génération de conseils financiers.
- Assurer la conformité avec les réglementations financières telles que GDPR et SOX.
- Mettre en œuvre la sécurité des données et les pratiques éthiques de l'IA dans les applications financières.
Fine-Tuning Models and Large Language Models (LLMs)
14 HeuresCette formation en direct avec instructeur dans Canada (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire à avancé qui souhaitent personnaliser des modèles pré-entraînés pour des tâches et des ensembles de données spécifiques.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes du réglage fin et ses applications.
- Préparer des ensembles de données pour affiner les modèles pré-entraînés.
- Affiner les grands modèles de langage (LLM) pour les tâches de NLP.
- Optimiser les performances des modèles et relever les défis les plus courants.
Fine-Tuning Multimodal Models
28 HeuresCette formation en direct dans Canada (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent maîtriser la mise au point de modèles multimodaux pour des solutions innovantes en matière d'IA.
A l'issue de cette formation, les participants seront capables de :
- Comprendre l'architecture des modèles multimodaux tels que CLIP et Flamingo.
- Préparer et prétraiter efficacement des ensembles de données multimodales.
- Affiner les modèles multimodaux pour des tâches spécifiques.
- Optimiser les modèles pour des applications et des performances réelles.
Fine-Tuning for Natural Language Processing (NLP)
21 HeuresCette formation en Canada (en ligne ou sur site) s'adresse aux professionnels de niveau intermédiaire qui souhaitent améliorer leurs projets NLP en affinant efficacement les modèles de langage pré-entraînés.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les principes fondamentaux de la mise au point pour les tâches de TAL.
- Affiner les modèles pré-entraînés tels que GPT, BERT, et T5 pour des applications NLP spécifiques.
- Optimiser les hyperparamètres pour améliorer les performances des modèles.
- Évaluer et déployer des modèles affinés dans des scénarios réels.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 HeuresCette formation en Canada (en ligne ou sur site) s'adresse aux chercheurs en IA de niveau avancé, aux ingénieurs en apprentissage automatique et aux développeurs qui souhaitent affiner les modèles DeepSeek LLM pour créer des applications d'IA spécialisées adaptées à des industries, des domaines ou des besoins commerciaux spécifiques.
A la fin de cette formation, les participants seront capables de :
- Comprendre l'architecture et les capacités des modèles DeepSeek, y compris DeepSeek-R1 et DeepSeek-V3.
- Préparer les ensembles de données et prétraiter les données pour le réglage fin.
- Affiner le DeepSeek LLM pour des applications spécifiques à un domaine.
- Optimiser et déployer efficacement les modèles affinés.
Fine-Tuning Large Language Models Using QLoRA
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site), s'adresse aux ingénieurs intermédiaires et avancés en apprentissage automatique, développeurs IA et scientifiques des données qui souhaitent apprendre à utiliser QLoRA pour ajuster efficacement de grands modèles à des tâches spécifiques et des personnalisations.
À la fin de cette formation, les participants seront capables de :
- Comprendre la théorie derrière QLoRA et les techniques de quantification pour les LLM (Large Language Models).
- Mettre en œuvre QLoRA pour l'ajustement fin de grands modèles de langage dans des applications spécifiques à un domaine.
- Optimiser la performance de l'ajustement fin sur des ressources informatiques limitées en utilisant la quantification.
- Déployer et évaluer efficacement les modèles ajustés fin dans des applications du monde réel.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site) s'adresse aux praticiens intermédiaires de l'apprentissage machine et aux développeurs IA qui souhaitent affiner et déployer des modèles à poids ouverts comme LLaMA, Mistral et Qwen pour des applications spécifiques d'affaires ou internes.
À la fin de cette formation, les participants seront capables de :
- Comprendre l'écosystème et les différences entre les modèles LLM open source.
- Préparer des jeux de données et des configurations d'affinement pour des modèles comme LLaMA, Mistral et Qwen.
- Exécuter des pipelines d'affinement en utilisant Hugging Face Transformers et PEFT.
- Évaluer, sauvegarder et déployer des modèles affinés dans des environnements sécurisés.
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site), s'adresse aux ingénieurs NLP de niveau intermédiaire et aux équipes de gestion des connaissances qui souhaitent affiner les pipelines RAG pour améliorer les performances dans les cas d'utilisation liés à la réponse aux questions, à la recherche d'entreprise et à la synthèse.
À l'issue de cette formation, les participants seront capables de :
- Comprendre l'architecture et le flux de travail des systèmes RAG.
- Affiner les composants récupérateur et générateur pour des données spécifiques au domaine.
- Évaluer la performance RAG et appliquer des améliorations grâce aux techniques PEFT.
- Déployer des systèmes RAG optimisés pour un usage interne ou en production.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 HeuresCette formation en direct, animée par un formateur dans Canada (en ligne ou sur site), s'adresse aux ingénieurs de haut niveau en apprentissage automatique et aux chercheurs en IA qui souhaitent appliquer la RLHF pour affiner les grands modèles d'IA afin d'améliorer leurs performances, leur sécurité et leur alignement.
À l'issue de cette formation, les participants seront capables de :
- Comprendre les fondements théoriques de la RLHF et pourquoi elle est essentielle dans le développement moderne de l'IA.
- Mettre en œuvre des modèles de récompense basés sur les retours humains pour guider les processus d'apprentissage par renforcement.
- Affiner les grands modèles de langage en utilisant des techniques de RLHF pour aligner leurs sorties avec les préférences humaines.
- Appliquer les meilleures pratiques pour échelonner les workflows de la RLHF pour les systèmes d'IA de production.
Fine-Tuning Vision-Language Models (VLMs)
14 HeuresThis instructor-led, live training in Canada (online or onsite) is aimed at advanced-level computer vision engineers and AI developers who wish to fine-tune VLMs such as CLIP and Flamingo to improve performance on industry-specific visual-text tasks.
By the end of this training, participants will be able to:
- Understand the architecture and pretraining methods of vision-language models.
- Fine-tune VLMs for classification, retrieval, captioning, or multimodal QA.
- Prepare datasets and apply PEFT strategies to reduce resource usage.
- Evaluate and deploy customized VLMs in production environments.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 HeuresCette formation en direct avec instructeur en Canada (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent maîtriser les techniques d'optimisation de grands modèles pour un réglage fin rentable dans des scénarios du monde réel.
A l'issue de cette formation, les participants seront capables de :
- Comprendre les défis liés à la mise au point de grands modèles.
- Appliquer les techniques de formation distribuée aux grands modèles.
- Tirer parti de la quantification et de l'élagage des modèles pour plus d'efficacité.
- Optimiser l'utilisation du matériel pour les tâches de réglage fin.
- Déployer efficacement des modèles affinés dans des environnements de production.
Prompt Engineering and Few-Shot Fine-Tuning
14 HeuresCette formation en direct avec instructeur dans Canada (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire qui souhaitent tirer parti de la puissance de l'ingénierie rapide et de l'apprentissage à court terme afin d'optimiser les performances du LLM pour des applications du monde réel.
A l'issue de cette formation, les participants seront en mesure de :
- Comprendre les principes de l'ingénierie des messages-guides et de l'apprentissage à court terme.
- Concevoir des messages-guides efficaces pour diverses tâches NLP.
- Tirer parti des techniques d'apprentissage à court terme pour adapter les LLM avec un minimum de données.
- Optimiser les performances des LLM pour des applications pratiques.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site) est destinée aux scientifiques des données et ingénieurs IA de niveau intermédiaire qui souhaitent affiner les grands modèles de langage de manière plus abordable et efficace en utilisant des méthodes comme LoRA, Adapter Tuning et Prefix Tuning.
À la fin de cette formation, les participants seront capables de :
- Comprendre la théorie derrière les approches d'affinement paramétrique efficace.
- Mettre en œuvre LoRA, Adapter Tuning et Prefix Tuning à l'aide de Hugging Face PEFT.
- Comparer les avantages et inconvénients en termes de performance et de coût des méthodes PEFT par rapport à un affinement complet.
- Déployer et échelonner les modèles de langage affinés avec une réduction des besoins en calcul et en stockage.