En ligne ou sur site, les cours de formation TensorFlow en direct, animés par un instructeur, démontrent, par le biais de discussions interactives et de pratiques pratiques, comment utiliser le système TensorFlow pour faciliter la recherche en apprentissage automatique et pour faciliter et accélérer la transition du prototype de recherche au système de production. La formation TensorFlow est disponible en tant que "formation en direct en ligne" ou "formation en direct sur site". La formation en direct en ligne (alias « formation en direct à distance ») est effectuée au moyen d'un ordinateur de bureau interactif à distance . La formation en direct sur site peut être effectuée localement dans les locaux du client en Saskatchewan ou dans les centres de formation d'entreprise NobleProg en Saskatchewan. NobleProg - Votre fournisseur de formation local
Regina - Édifice de la Banque Royale
2002 11e Avenue, Regina, Canada, S4P 0J3
Développez votre entreprise dans l’un des pôles financiers les plus importants de Regina. Établissez votre base dans le prestigieux édifice de la Banque Royale, qui abrite plusieurs grandes sociétés de services financiers et professionnels.
Impressionnez vos clients et collègues avec la vue imprenable sur la ville depuis l’édifice avant de vous mettre au travail dans un environnement élégant baigné de lumière naturelle. Vous pouvez également voyager facilement pour le travail ou le plaisir, l’aéroport international de Regina à proximité offrant des vols réguliers à travers le Canada et au-delà.
Vous serez à moins de 10 minutes en voiture de l'Université de la Saskatchewan et du parc régional Peter Zakreski. Cet hôtel avec spa se trouve à 0,1 km de Cielo et à 0,6 km du parc Evelyn Edwards.
Immeuble de la Banque Royale de Regina
7e étage, 2010 Avenue 11, Regina, Canada, S4P 0J3
Emplacement Privilégié dans le Quartier Financier de Regina
Développez votre entreprise au cœur de l'un des principaux pôles financiers de Regina. Installez votre bureau dans le prestigieux Immeuble de la Banque Royale, un bâtiment emblématique abritant des entreprises de services financiers et professionnels de premier plan.
Impressionnez vos clients et collègues avec des vues imprenables sur la ville, puis passez à la productivité dans des environnements modernes et baignés de lumière naturelle. Pour vos déplacements professionnels ou personnels, bénéficiez d'un accès facile à l'Aéroport international de Regina, offrant des vols réguliers à travers le Canada et au-delà.
Cette formation en direct avec instructeur en Saskatchewan (en ligne ou sur site) est destinée aux professionnels de niveau avancé qui souhaitent approfondir leur compréhension de la vision par ordinateur et explorer les capacités de TensorFlow à développer des modèles de vision sophistiqués à l'aide de Google Colab.
À l'issue de cette formation, les participants seront capables de :
Construire et entraîner des réseaux neuronaux convolutifs (CNN) en utilisant TensorFlow.
Tirer parti de Google Colab pour un développement de modèle évolutif et efficace basé sur le cloud.
Mettre en œuvre des techniques de prétraitement d'images pour les tâches de vision par ordinateur.
Déployer des modèles de vision par ordinateur pour des applications réelles.
Utiliser l'apprentissage par transfert pour améliorer les performances des modèles CNN.
Visualiser et interpréter les résultats des modèles de classification d'images.
Cette formation en direct avec instructeur en Saskatchewan (en ligne ou sur site) s'adresse aux data scientists et aux développeurs de niveau intermédiaire qui souhaitent comprendre et appliquer les techniques d'apprentissage profond en utilisant l'environnement Google Colab.
À l'issue de cette formation, les participants seront en mesure de :
Configurer et naviguer dans Google Colab pour des projets d'apprentissage profond.
Comprendre les principes fondamentaux des réseaux neuronaux.
Implémenter des modèles d'apprentissage profond en utilisant TensorFlow.
Former et évaluer les modèles d'apprentissage profond.
Utiliser les fonctionnalités avancées de TensorFlow pour l'apprentissage profond.
Il s'agit d'un cours de 4 jours introduisant l'IA et ses applications. Il est possible de disposer d'une journée supplémentaire pour entreprendre un projet d'IA à l'issue de ce cours.
Dans cette formation en direct, dirigée par un instructeur, les participants apprendront à utiliser des Python bibliothèques pour le NLP en créant une application qui traite un ensemble d'images et génère des légendes.  ;
A l'issue de cette formation, les participants seront capables de :
Concevoir et coder DL pour le NLP en utilisant des Python bibliothèques.
Créer Python un code qui lit une énorme collection d'images et génère des mots-clés.
Créer Python code qui génère des légendes à partir des mots-clés détectés.
Ce cours convient aux chercheurs et ingénieurs Deep Learning intéressés par l'utilisation des outils disponibles (principalement open source) pour l'analyse d'images informatiques.
Cette formation en <loc> ; (en ligne ou sur site) est destinée aux data scientists qui souhaitent utiliser TensorFlow pour analyser des données de fraude potentielle.
A l'issue de cette formation, les participants seront capables de :
Créer un modèle de détection de fraude dans Python et TensorFlow.
Construire des régressions linéaires et des modèles de régression linéaire pour prédire la fraude.
Développer une application d'IA de bout en bout pour l'analyse des données de fraude.
Cette formation dirigée par un instructeur en <loc> ; (en ligne ou sur site) est destinée aux développeurs et aux scientifiques des données qui souhaitent utiliser Tensorflow 2.x pour construire des prédicteurs, des classificateurs, des modèles génératifs, des réseaux neuronaux et ainsi de suite.
A l'issue de cette formation, les participants seront capables de :
Installer et configurer TensorFlow 2.x.
Comprendre les avantages de TensorFlow 2.x par rapport aux versions précédentes.
Construire des modèles d'apprentissage profond.
Implémenter un classificateur d'images avancé.
Déployer un modèle d'apprentissage profond dans le cloud, les appareils mobiles et IoT.
Dans cette formation en direct avec instructeur (en ligne ou sur site), les participants apprendront à configurer et à utiliser TensorFlow Serving pour déployer et gérer des modèles de ML dans un environnement de production.
A l'issue de cette formation, les participants seront capables de :
Former, exporter et servir divers modèles TensorFlow.
Tester et déployer des algorithmes en utilisant une seule architecture et un ensemble d'API.
Étendre TensorFlow Serving pour servir d'autres types de modèles au-delà des modèles TensorFlow.
TensorFlow est une API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Le système est conçu pour faciliter la recherche en apprentissage automatique et faciliter la transition rapide d'un prototype de recherche à un système de production.
Public
Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .
Une fois ce cours terminé, les délégués:
comprendre la structure et les mécanismes de déploiement de TensorFlow
être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
Cette formation en direct avec instructeur en <loc> ; (en ligne ou sur site) est destinée aux data scientists qui souhaitent passer de la formation d'un seul modèle de ML au déploiement de nombreux modèles de ML en production.
A l'issue de cette formation, les participants seront capables de :
Installer et configurer TFX et les outils tiers correspondants.
Utiliser TFX pour créer et gérer un pipeline de production ML complet.
Travailler avec les composants TFX pour effectuer la modélisation, l'entraînement, l'inférence et la gestion des déploiements.
Déployez des fonctions d'apprentissage automatique dans des applications web, des applications mobiles, des appareils IoT et bien plus encore.
Dans cette formation en direct, dirigée par un instructeur, les participants apprendront à tirer parti des innovations des processeurs TPU pour maximiser les performances de leurs propres applications d'intelligence artificielle.
A l'issue de la formation, les participants seront capables de :
Entraîner divers types de réseaux neuronaux sur de grandes quantités de données.
TensorFlow™ est une bibliothèque de logiciels open source pour les calculs numériques en utilisant des graphiques de flux de données.
SyntaxNet est un cadre de traitement de langue naturelle pour TensorFlow.
Word2Vec est utilisé pour l'apprentissage des représentations vectorielles des mots, appelé "word embeddings". Word2vec est un modèle prédictif particulièrement computable et efficace pour l'apprentissage des entrées de mots à partir du texte. Il vient en deux goûts, le modèle Continuous Bag-of-Words (CBOW) et le modèle Skip-Gram (Chapitre 3.1 et 3.2 dans Mikolov et al.)
Utilisé en tandem, SyntaxNet et Word2Vec permettent aux utilisateurs de générer des modèles d'insertion appris à partir de l'entrée de langue naturelle.
Audience
Ce cours est destiné aux développeurs et aux ingénieurs qui ont l'intention de travailler avec SyntaxNet et Word2Vec modèles dans leurs TensorFlow graphiques.
Après avoir terminé ce cours, les délégués :
Comprendre TensorFlow’s structures et mécanismes de déploiement
être en mesure de réaliser des tâches d'installation / environnement de production / architecture et de configuration
être en mesure d’évaluer la qualité du code, d’effectuer le débogage, de surveiller
être en mesure de mettre en œuvre des modèles de production avancés tels que les modèles de formation, les termes d'emballage, les graphiques de construction et le logging
Ce cours commence par vous donner des connaissances conceptuelles sur les réseaux de neurones et plus généralement sur les algorithmes d'apprentissage automatique, d'apprentissage approfondi (algorithmes et applications).
La partie 1 (40%) de cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la bonne technologie: TensorFlow , Caffe , Theano, DeepDrive, Keras , etc.
La partie 2 (20%) de cette formation présente Theano, une bibliothèque python qui facilite l’écriture de modèles d’apprentissage approfondi.
La partie 3 (40%) de la formation serait largement basée sur Tensorflow - API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Les exemples et handson seraient tous fabriqués dans TensorFlow .
Public
Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .
Une fois ce cours terminé, les délégués:
avoir une bonne compréhension des réseaux de neurones profonds (DNN), CNN et RNN
comprendre la structure et les mécanismes de déploiement de TensorFlow
être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
En savoir plus...
Dernière Mise À Jour:
Nos clients témoignent (4)
Le formateur a bien expliqué le contenu et a été engageant tout au long de la formation. Il s'est arrêté pour poser des questions et nous a permis d'arriver à nos propres solutions lors de certaines sessions pratiques. Il a également adapté le cours en fonction de nos besoins.
Robert Baker
Formation - Deep Learning with TensorFlow 2.0
Traduction automatique
Tomasz connaît vraiment bien les informations et le cours était bien rythmé.
Raju Krishnamurthy - Google
Formation - TensorFlow Extended (TFX)
Traduction automatique
Organisation, conformément à l'ordre du jour proposé, les connaissances approfondies du formateur dans ce sujet
Ali Kattan - TWPI
Formation - Natural Language Processing with TensorFlow
Traduction automatique
Very updated approach or CPI (tensor flow, era, learn) to do machine learning.
TensorFlow formation à Saskatchewan, Weekend TensorFlow cours à Saskatchewan, Soir TensorFlow formation à Saskatchewan, TensorFlow formateur en ligne à Saskatchewan, TensorFlow formation à Saskatchewan, TensorFlow cours du soir à Saskatchewan, TensorFlow formation Intra à Saskatchewan, TensorFlow formation Intra Entreprise à Saskatchewan, TensorFlow formation Inter à Saskatchewan, TensorFlow formation Inter Entreprise à Saskatchewan, TensorFlow professeur à Saskatchewan,TensorFlow cours à Saskatchewan, Weekend TensorFlow formation à Saskatchewan, TensorFlow préparation à Saskatchewan, TensorFlow cours particuliers à Saskatchewan, TensorFlow formateur à Saskatchewan, TensorFlow coach à Saskatchewan, TensorFlow cours privé à Saskatchewan, TensorFlow coaching à Saskatchewan, TensorFlow instructeur à Saskatchewan, TensorFlow sur place à Saskatchewan, TensorFlow stage de préparation à Saskatchewan, TensorFlow entraînement à Saskatchewan, TensorFlow préparation aux examens à Saskatchewan, Soir TensorFlow cours à Saskatchewan