
Online or onsite, instructor-led live Natural Language Processing (NLP) training courses demonstrate through interactive discussion and hands-on practice how to extract insights and meaning from this data. Utilizing different programming languages such as Python and R and Natural Language Processing (NLP) libraries, our trainings combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to help participants understand the meaning behind text data. NLP trainings walk participants step-by-step through the process of evaluating and applying the right algorithms to analyze data and report on its significance.
NLP training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Onsite live Natural Language Processing (NLP) trainings in Canada can be carried out locally on customer premises or in NobleProg corporate training centers.
NobleProg -- Your Local Training Provider
Testimonials
I did like the exercises.
Office for National Statistics
Course: Natural Language Processing with Python
This is one of the best hands-on with exercises programming courses I have ever taken.
Laura Kahn
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
This is one of the best quality online training I have ever taken in my 13 year career. Keep up the great work!.
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
About face area.
中移物联网
Course: Deep Learning for NLP (Natural Language Processing)
the last day. generation part
Accenture Inc
Course: Python for Natural Language Generation
The topics referring to NLG. The team was able to learn something new in the end with topics that were interesting but it was only in the last day. There were also more hands on activities than slides which was good.
Accenture Inc
Course: Python for Natural Language Generation
I like that it focuses more on the how-to of the different text summarization methods
Course: Text Summarization with Python
Organization, adhering to the proposed agenda, the trainer's vast knowledge in this subject
Ali Kattan - TWPI
Course: Natural Language Processing with TensorFlow
the way he present everything with examples and training was so useful
Ibrahim Mohammedameen - TWPI
Course: Natural Language Processing with TensorFlow
Very knowledgeable
Usama Adam - TWPI
Course: Natural Language Processing with TensorFlow
The trainer very easily explained difficult and advanced topics.
Leszek K
Course: Artificial Intelligence Overview
Machine Translated
Human identification and circuit board bad point detection
王 春柱 - 中移物联网
Course: Deep Learning for NLP (Natural Language Processing)
Machine Translated
Demonstrate
中移物联网
Course: Deep Learning for NLP (Natural Language Processing)
Machine Translated
This is one of the best quality online training I have ever taken in my 13 year career. Keep up the great work!.
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
I like that it focuses more on the how-to of the different text summarization methods
Course: Text Summarization with Python
Some of our clients











































.png)






NLP (Natural Language Processing) Subcategories in Canada
NLP (Natural Language Processing) Course Outlines in Canada
In this instructor-led, live training, participants will learn how to build chatbots in Python.
By the end of this training, participants will be able to:
- Understand the fundamentals of building chatbots
- Build, test, deploy, and troubleshoot various chatbots using Python
Audience
- Developers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To request a customized training for this course, please contact us to arrange.
By the end of this training, participants will be able to:
- Design and code DL for NLP using Python libraries.
- Create Python code that reads a substantially huge collection of pictures and generates keywords.
- Create Python Code that generates captions from the detected keywords.
In this instructor-led, live training, participants will learn how to use Python to produce high-quality natural language text by building their own NLG system from scratch. Case studies will also be examined and the relevant concepts will be applied to live lab projects for generating content.
By the end of this training, participants will be able to:
- Use NLG to automatically generate content for various industries, from journalism, to real estate, to weather and sports reporting
- Select and organize source content, plan sentences, and prepare a system for automatic generation of original content
- Understand the NLG pipeline and apply the right techniques at each stage
- Understand the architecture of a Natural Language Generation (NLG) system
- Implement the most suitable algorithms and models for analysis and ordering
- Pull data from publicly available data sources as well as curated databases to use as material for generated text
- Replace manual and laborious writing processes with computer-generated, automated content creation
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
The course will cover how to make use of text written by humans, such as blog posts, tweets, etc...
For example, an analyst can set up an algorithm which will reach a conclusion automatically based on extensive data source.
This instructor-led, live course centers around extracting insights and meaning from this data. Utilizing the R Language and Natural Language Processing (NLP) libraries, we combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to algorithmically understand the meaning behind text data. Data samples are available in various languages per customer requirements.
By the end of this training participants will be able to prepare data sets (large and small) from disparate sources, then apply the right algorithms to analyze and report on its significance.
Format of the Course
- Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding
In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.
By the end of this training, participants will be able to:
- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will be able to:
- Solve text-based data science problems with high-quality, reusable code
- Apply different aspects of scikit-learn (classification, clustering, regression, dimensionality reduction) to solve problems
- Build effective machine learning models using text-based data
- Create a dataset and extract features from unstructured text
- Visualize data with Matplotlib
- Build and evaluate models to gain insight
- Troubleshoot text encoding errors
Audience
- Developers
- Data Scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will be able to:
- Install and configure spaCy.
- Understand spaCy's approach to Natural Language Processing (NLP).
- Extract patterns and obtain business insights from large-scale data sources.
- Integrate the spaCy library with existing web and legacy applications.
- Deploy spaCy to live production environments to predict human behavior.
- Use spaCy to pre-process text for Deep Learning
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
- To learn more about spaCy, please visit: https://spacy.io/
In this instructor-led, live training, participants will learn to use Python to create a simple application that auto-generates a summary of input text.
By the end of this training, participants will be able to:
- Use a command-line tool that summarizes text.
- Design and create Text Summarization code using Python libraries.
- Evaluate three Python summarization libraries: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17
Audience
- Developers
- Data Scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.
Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).
Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.
Audience
This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.
After completing this course, delegates will:
- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
Word2Vec is a method of computing vector representations of words introduced by a team of researchers at Google led by Tomas Mikolov.
Audience
This course is directed at researchers, engineers and developers seeking to utilize Deeplearning4J to construct Word2Vec models.