Artificial Intelligence (AI) Training Courses

Artificial Intelligence (AI) Training Courses

Local, instructor-led live Artificial Intelligence (AI) training courses demonstrate through hands-on practice how to implement AI solutions for solving real-world problems.

AI training is available as "onsite live training" or "remote live training". Canada onsite live Artificial Intelligence (AI) trainings can be carried out locally on customer premises or in NobleProg corporate training centers. Remote live training is carried out by way of an interactive, remote desktop.

NobleProg -- Your Local Training Provider.

Testimonials

★★★★★
★★★★★

AI (Artificial Intelligence) Course Outlines

Title
Duration
Overview
Title
Duration
Overview
7 hours
Overview
This course has been created for managers, solutions architects, innovation officers, CTOs, software architects and anyone who is interested in an overview of applied artificial intelligence and the nearest forecast for its development.
14 hours
Overview
In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition.

By the end of this training, participants will be able to:

- Build a deep learning model
- Automate data labeling
- Work with models from Caffe and TensorFlow-Keras
- Train data using multiple GPUs, the cloud, or clusters

Audience

- Developers
- Engineers
- Domain experts

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to implement deep learning models for finance using R as they step through the creation of a deep learning stock price prediction model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in finance
- Use R to create deep learning models for finance
- Build their own deep learning stock price prediction model using R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
Computer Vision is a field that involves automatically extracting, analyzing, and understanding useful information from digital media. Python is a high-level programming language famous for its clear syntax and code readibility.

In this instructor-led, live training, participants will learn the basics of Computer Vision as they step through the creation of set of simple Computer Vision application using Python.

By the end of this training, participants will be able to:

- Understand the basics of Computer Vision
- Use Python to implement Computer Vision tasks
- Build their own face, object, and motion detection systems

Audience

- Python programmers interested in Computer Vision

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
35 hours
Overview
Advances in technologies and the increasing amount of information are transforming how law enforcement is conducted. The challenges that Big Data pose are nearly as daunting as Big Data's promise. Storing data efficiently is one of these challenges; effectively analyzing it is another.

In this instructor-led, live training, participants will learn the mindset with which to approach Big Data technologies, assess their impact on existing processes and policies, and implement these technologies for the purpose of identifying criminal activity and preventing crime. Case studies from law enforcement organizations around the world will be examined to gain insights on their adoption approaches, challenges and results.

By the end of this training, participants will be able to:

- Combine Big Data technology with traditional data gathering processes to piece together a story during an investigation
- Implement industrial big data storage and processing solutions for data analysis
- Prepare a proposal for the adoption of the most adequate tools and processes for enabling a data-driven approach to criminal investigation

Audience

- Law Enforcement specialists with a technical background

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
DL (Deep Learning) is a subset of ML (Machine Learning).

Python is a popular programming language that contains libraries for Deep Learning for NLP.

Deep Learning for NLP (Natural Language Processing) allows a machine to learn simple to complex language processing. Among the tasks currently possible are language translation and caption generation for photos.

In this instructor-led, live training, participants will learn to use Python libraries for NLP as they create an application that processes a set of pictures and generates captions.

By the end of this training, participants will be able to:

- Design and code DL for NLP using Python libraries.
- Create Python code that reads a substantially huge collection of pictures and generates keywords.
- Create Python Code that generates captions from the detected keywords.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
In Python Machine Learning, the Text Summarization feature is able to read the input text and produce a text summary. This capability is available from the command-line or as a Python API/Library. One exciting application is the rapid creation of executive summaries; this is particularly useful for organizations that need to review large bodies of text data before generating reports and presentations.

In this instructor-led, live training, participants will learn to use Python to create a simple application that auto-generates a summary of input text.

By the end of this training, participants will be able to:

- Use a command-line tool that summarizes text.
- Design and create Text Summarization code using Python libraries.
- Evaluate three Python summarization libraries: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
35 hours
Overview
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.

Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

-

have a good understanding on deep neural networks(DNN), CNN and RNN

-

understand TensorFlow’s structure and deployment mechanisms

-

be able to carry out installation / production environment / architecture tasks and configuration

-

be able to assess code quality, perform debugging, monitoring

-

be able to implement advanced production like training models, building graphs and logging
14 hours
Overview
The Apache OpenNLP library is a machine learning based toolkit for processing natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.

In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.

By the end of this training, participants will be able to:

- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
Machine Learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the banking industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of live projects.

Audience

- Developers
- Data scientists
- Banking professionals with a technical background

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
35 hours
Overview
By the end of the training the delegates are expected to be sufficiently equipped with the essential python concepts and should be able to sufficiently use NLTK to implement most of the NLP and ML based operations. The training is aimed at giving not just an executional knowledge but also the logical and operational knowledge of the technology therein.
21 hours
Overview
Predictive analytics is the process of using data analytics to make predictions about the future. This process uses data along with data mining, statistics, and machine learning techniques to create a predictive model for forecasting future events.

In this instructor-led, live training, participants will learn how to use Matlab to build predictive models and apply them to large sample data sets to predict future events based on the data.

By the end of this training, participants will be able to:

- Create predictive models to analyze patterns in historical and transactional data
- Use predictive modeling to identify risks and opportunities
- Build mathematical models that capture important trends
- Use data from devices and business systems to reduce waste, save time, or cut costs

Audience

- Developers
- Engineers
- Domain experts

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to implement deep learning models for banking using R as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in banking
- Use R to create deep learning models for banking
- Build their own deep learning credit risk model using R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Overview
TensorFlow Serving is a system for serving machine learning (ML) models to production.

In this instructor-led, live training, participants will learn how to configure and use TensorFlow Serving to deploy and manage ML models in a production environment.

By the end of this training, participants will be able to:

- Train, export and serve various TensorFlow models
- Test and deploy algorithms using a single architecture and set of APIs
- Extend TensorFlow Serving to serve other types of models beyond TensorFlow models

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
In this instructor-led, live training, participants will learn how to use the iOS Machine Learning (ML) technology stack as they step through the creation and deployment of an iOS mobile app.

By the end of this training, participants will be able to:

- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
Natural language generation (NLG) refers to the production of natural language text or speech by a computer.

In this instructor-led, live training, participants will learn how to use Python to produce high-quality natural language text by building their own NLG system from scratch. Case studies will also be examined and the relevant concepts will be applied to live lab projects for generating content.

By the end of this training, participants will be able to:

- Use NLG to automatically generate content for various industries, from journalism, to real estate, to weather and sports reporting
- Select and organize source content, plan sentences, and prepare a system for automatic generation of original content
- Understand the NLG pipeline and apply the right techniques at each stage
- Understand the architecture of a Natural Language Generation (NLG) system
- Implement the most suitable algorithms and models for analysis and ordering
- Pull data from publicly available data sources as well as curated databases to use as material for generated text
- Replace manual and laborious writing processes with computer-generated, automated content creation

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
In this instructor-led, live training, participants will learn how to use the right machine learning and NLP (Natural Language Processing) techniques to extract value from text-based data.

By the end of this training, participants will be able to:

- Solve text-based data science problems with high-quality, reusable code
- Apply different aspects of scikit-learn (classification, clustering, regression, dimensionality reduction) to solve problems
- Build effective machine learning models using text-based data
- Create a dataset and extract features from unstructured text
- Visualize data with Matplotlib
- Build and evaluate models to gain insight
- Troubleshoot text encoding errors

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.

By the end of this training, participants will be able to:

- Prepare data for neural networks using the normalization process
- Implement feed forward networks and propagation training methodologies
- Implement classification and regression tasks
- Model and train neural networks using Encog's GUI based workbench
- Integrate neural network support into real-world applications

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.

By the end of this training, participants will be able to:

- Implement different neural networks optimization techniques to resolve underfitting and overfitting
- Understand and choose from a number of neural network architectures
- Implement supervised feed forward and feedback networks

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
In this instructor-led, live training, participants will learn advanced techniques for Machine Learning with R as they step through the creation of a real-world application.

By the end of this training, participants will be able to:

- Understand and implement unsupervised learning techniques
- Apply clustering and classification to make predictions based on real world data.
- Visualize data to quicly gain insights, make decisions and further refine analysis.
- Improve the performance of a machine learning model using hyper-parameter tuning.
- Put a model into production for use in a larger application.
- Apply advanced machine learning techniques to answer questions involving social network data, big data, and more.

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
In this instructor-led, live training, participants will learn the most relevant and cutting-edge machine learning techniques in Python as they build a series of demo applications involving image, music, text, and financial data.

By the end of this training, participants will be able to:

- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
21 hours
Overview
Fiji is an open-source image processing package that bundles ImageJ (an image processing program for scientific multidimensional images) and a number of plugins for scientific image analysis.

In this instructor-led, live training, participants will learn how to use the Fiji distribution and its underlying ImageJ program to create an image analysis application.

By the end of this training, participants will be able to:

- Use Fiji's advanced programming features and software components to extend ImageJ
- Stitch large 3d images from overlapping tiles
- Automatically update a Fiji installation on startup using the integrated update system
- Select from a broad selection of scripting languages to build custom image analysis solutions
- Use Fiji's powerful libraries, such as ImgLib on large bioimage datasets
- Deploy their application and collaborate with other scientists on similar projects

Audience

- Scientists
- Researchers
- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
This instructor-led, live training introduces the software, hardware, and step-by-step process needed to build a facial recognition system from scratch. Facial Recognition is also known as Face Recognition.

The hardware used in this lab includes Rasberry Pi, a camera module, servos (optional), etc. Participants are responsible for purchasing these components themselves. The software used includes OpenCV, Linux, Python, etc.

By the end of this training, participants will be able to:

- Install Linux, OpenCV and other software utilities and libraries on a Rasberry Pi.
- Configure OpenCV to capture and detect facial images.
- Understand the various options for packaging a Rasberry Pi system for use in real-world environments.
- Adapt the system for a variety of use cases, including surveillance, identity verification, etc.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- Other hardware and software options include: Arduino, OpenFace, Windows, etc. If you wish to use any of these, please contact us to arrange.
14 hours
Overview
OpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.

In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.

By the end of this training, participants will be able to:

- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for banking using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in banking
- Use Python, Keras, and TensorFlow to create deep learning models for banking
- Build their own deep learning credit risk model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Deep learning is a subfield of machine learning which uses methods based on learning data representations and structures such as neural networks. Python is a high-level programming language famous for its clear syntax and code readability.

In this instructor-led, live training, participants will learn how to implement deep learning models for finance using Python as they step through the creation of a deep learning stock price prediction model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning
- Learn the applications and uses of deep learning in finance
- Use Python, Keras, and TensorFlow to create deep learning models for finance
- Build their own deep learning stock price prediction model using Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Upcoming Artificial Intelligence Courses

Weekend Artificial Intelligence courses, Evening Artificial Intelligence (AI) training, Artificial Intelligence (AI) boot camp, Artificial Intelligence (AI) instructor-led, Weekend Artificial Intelligence (AI) training, Evening Artificial Intelligence courses, AI (Artificial Intelligence) coaching, Artificial Intelligence instructor, Artificial Intelligence trainer, Artificial Intelligence training courses, AI classes, AI (Artificial Intelligence) on-site, Artificial Intelligence (AI) private courses, AI one on one training

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients

is growing fast!

We are looking to expand our presence in Canada!

As a Business Development Manager you will:

  • expand business in Canada
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!