Artificial Intelligence (AI) Training Courses in Canada

Artificial Intelligence (AI) Training Courses

Local, instructor-led live Artificial Intelligence (AI) training courses demonstrate through hands-on practice how to implement AI solutions for solving real-world problems.

AI training is available as "onsite live training" or "remote live training". Canada onsite live Artificial Intelligence (AI) trainings can be carried out locally on customer premises or in NobleProg corporate training centers. Remote live training is carried out by way of an interactive, remote desktop.

NobleProg -- Your Local Training Provider

Testimonials

★★★★★
★★★★★

Some of our clients

AI (Artificial Intelligence) Course Outlines in Canada

Course Name
Duration
Overview
Course Name
Duration
Overview
14 hours
Overview
This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.
21 hours
Overview
This course has been designed for people interested in extracting meaning from written English text, though the knowledge can be applied to other human languages as well.

The course will cover how to make use of text written by humans, such as blog posts, tweets, etc...

For example, an analyst can set up an algorithm which will reach a conclusion automatically based on extensive data source.
21 hours
Overview
PredictionIO is an open source Machine Learning Server built on top of state-of-the-art open source stack.

Audience

This course is directed at developers and data scientists who want to create predictive engines for any machine learning task.
14 hours
Overview
Pattern Matching is a technique used to locate specified patterns within an image. It can be used to determine the existence of specified characteristics within a captured image, for example the expected label on a defective product in a factory line or the specified dimensions of a component. It is different from "Pattern Recognition" (which recognizes general patterns based on larger collections of related samples) in that it specifically dictates what we are looking for, then tells us whether the expected pattern exists or not.

Format of the Course

- This course introduces the approaches, technologies and algorithms used in the field of pattern matching as it applies to Machine Vision.
21 hours
Overview
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
This course uses a practical approach to teaching OptaPlanner. It provides participants with the tools needed to perform the basic functions of this tool.
14 hours
Overview
In this instructor-led, live training, we go over the principles of neural networks and use OpenNN to implement a sample application.

Format of the course

- Lecture and discussion coupled with hands-on exercises.
7 hours
Overview
In this instructor-led, live training, participants will learn how to set up and use OpenNMT to carry out translation of various sample data sets. The course starts with an overview of neural networks as they apply to machine translation. Participants will carry out live exercises throughout the course to demonstrate their understanding of the concepts learned and get feedback from the instructor.

By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.

Source and target language samples will be pre-arranged per the audience's requirements.

Format of the Course

- Part lecture, part discussion, heavy hands-on practice
14 hours
Overview
The Apache OpenNLP library is a machine learning based toolkit for processing natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.

In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.

By the end of this training, participants will be able to:

- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
OpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.

In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.

By the end of this training, participants will be able to:

- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
Overview
OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-licensed library that includes several hundreds of computer vision algorithms.

Audience

This course is directed at engineers and architects seeking to utilize OpenCV for computer vision projects
21 hours
Overview
Course is dedicated for those who would like to know an alternative program to the commercial MATLAB package. The three-day training provides comprehensive information on moving around the environment and performing the OCTAVE package for data analysis and engineering calculations. The training recipients are beginners but also those who know the program and would like to systematize their knowledge and improve their skills. Knowledge of other programming languages is not required, but it will greatly facilitate the learners' acquisition of knowledge. The course will show you how to use the program in many practical examples.
14 hours
Overview
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
21 hours
Overview
This classroom based training session will explore NLP techniques in conjunction with the application of AI and Robotics in business. Delegates will undertake computer based examples and case study solving exercises using Python
21 hours
Overview
It is estimated that unstructured data accounts for more than 90 percent of all data, much of it in the form of text. Blog posts, tweets, social media, and other digital publications continuously add to this growing body of data.

This instructor-led, live course centers around extracting insights and meaning from this data. Utilizing the R Language and Natural Language Processing (NLP) libraries, we combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to algorithmically understand the meaning behind text data. Data samples are available in various languages per customer requirements.

By the end of this training participants will be able to prepare data sets (large and small) from disparate sources, then apply the right algorithms to analyze and report on its significance.

Format of the Course

- Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding
21 hours
Overview
Natural language generation (NLG) refers to the production of natural language text or speech by a computer.

In this instructor-led, live training, participants will learn how to use Python to produce high-quality natural language text by building their own NLG system from scratch. Case studies will also be examined and the relevant concepts will be applied to live lab projects for generating content.

By the end of this training, participants will be able to:

- Use NLG to automatically generate content for various industries, from journalism, to real estate, to weather and sports reporting
- Select and organize source content, plan sentences, and prepare a system for automatic generation of original content
- Understand the NLG pipeline and apply the right techniques at each stage
- Understand the architecture of a Natural Language Generation (NLG) system
- Implement the most suitable algorithms and models for analysis and ordering
- Pull data from publicly available data sources as well as curated databases to use as material for generated text
- Replace manual and laborious writing processes with computer-generated, automated content creation

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
In this instructor-led, live training in Canada, participants will learn the most relevant and cutting-edge machine learning techniques in Python as they build a series of demo applications involving image, music, text, and financial data.

By the end of this training, participants will be able to:

- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.
28 hours
Overview
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
7 hours
Overview
The training is aimed at people who want to learn the basics of neural networks and their applications.
21 hours
Overview
This classroom based training session will explore machine learning tools with (suggested) Python. Delegates will have computer based examples and case study exercises to undertake.
21 hours
Overview
This course introduces machine learning methods in robotics applications.

It is a broad overview of existing methods, motivations and main ideas in the context of pattern recognition.

After a short theoretical background, participants will perform simple exercise using open source (usually R) or any other popular software.
21 hours
Overview
The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 hours
Overview
This classroom based training session will explore machine learning techniques, with computer based examples and case study solving exercises using a relevant programme languauge
14 hours
Overview
In this instructor-led, live training, participants will learn how to use the iOS Machine Learning (ML) technology stack as they step through the creation and deployment of an iOS mobile app.

By the end of this training, participants will be able to:

- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Overview
This training course is for people that would like to apply basic Machine Learning techniques in practical applications.

Audience

Data scientists and statisticians that have some familiarity with machine learning and know how to program R. The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give a practical introduction to machine learning to participants interested in applying the methods at work

Sector specific examples are used to make the training relevant to the audience.
14 hours
Overview
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the R programming platform and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 hours
Overview
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 hours
Overview
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Scala programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
Weekend Artificial Intelligence courses, Evening Artificial Intelligence (AI) training, Artificial Intelligence (AI) boot camp, Artificial Intelligence (AI) instructor-led, Weekend Artificial Intelligence (AI) training, Evening Artificial Intelligence courses, AI (Artificial Intelligence) coaching, Artificial Intelligence instructor, Artificial Intelligence trainer, Artificial Intelligence training courses, AI classes, AI (Artificial Intelligence) on-site, Artificial Intelligence (AI) private courses, AI one on one training

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

is growing fast!

We are looking to expand our presence in Canada!

As a Business Development Manager you will:

  • expand business in Canada
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!