Merci d'avoir envoyé votre demande ! Un membre de notre équipe vous contactera sous peu.
Merci d'avoir envoyé votre réservation ! Un membre de notre équipe vous contactera sous peu.
Plan du cours
Overview of Chinese AI GPU Ecosystem
- Comparison of Huawei Ascend, Biren, Cambricon MLU
- CUDA vs CANN, Biren SDK, and BANGPy models
- Industry trends and vendor ecosystems
Preparing for Migration
- Assessing your CUDA codebase
- Identifying target platforms and SDK versions
- Toolchain installation and environment setup
Code Translation Techniques
- Porting CUDA memory access and kernel logic
- Mapping compute grid/thread models
- Automated vs manual translation options
Platform-Specific Implementations
- Using Huawei CANN operators and custom kernels
- Biren SDK conversion pipeline
- Rebuilding models with BANGPy (Cambricon)
Cross-Platform Testing and Optimization
- Profiling execution on each target platform
- Memory tuning and parallel execution comparisons
- Performance tracking and iteration
Managing Mixed GPU Environments
- Hybrid deployments with multiple architectures
- Fallback strategies and device detection
- Abstraction layers for code maintainability
Case Studies and Best Practices
- Porting vision/NLP models to Ascend or Cambricon
- Retrofitting inference pipelines on Biren clusters
- Handling version mismatches and API gaps
Summary and Next Steps
Pré requis
- Experience programming with CUDA or GPU-based applications
- Understanding of GPU memory models and compute kernels
- Familiarity with AI model deployment or acceleration workflows
Audience
- GPU programmers
- System architects
- Porting specialists
21 Heures