Merci d'avoir envoyé votre demande ! Un membre de notre équipe vous contactera sous peu.
Merci d'avoir envoyé votre réservation ! Un membre de notre équipe vous contactera sous peu.
Plan du cours
Introduction to DevSecOps and AI Integration
- DevSecOps principles and goals
- The role of AI and ML in DevSecOps
- Security automation trends and tool categories
Static and Dynamic Code Analysis with AI
- Using SonarQube, Semgrep, or Snyk Code for static analysis
- Dynamic testing with AI-assisted test case generation
- Interpreting results and integrating with version control systems
Secrets and Credential Leak Detection
- AI-enhanced detection of hardcoded secrets (e.g., GitHub Advanced Security, Gitleaks)
- Preventing secrets from entering source control
- Creating automatic blocking and alerting rules
AI-Powered Dependency and Container Scanning
- Scanning containers with Trivy and AI-enabled plugins
- Monitoring third-party libraries and SBOMs
- Automated remediation recommendations and patch alerts
Intelligent Threat Modeling and Risk Assessment
- Automated threat modeling with AI-based tools
- Risk prioritization using machine learning models
- Linking business impact to technical vulnerabilities
CI/CD Pipeline Integration and Automation
- Embedding security checks in Jenkins, GitHub Actions, or GitLab CI
- Creating policies-as-code to enforce rules across environments
- Generating AI-assisted reports for audits and compliance
Case Studies and Security Automation Patterns
- Real-world examples of AI in security pipelines
- Choosing the right tools for your ecosystem
- Best practices for building and maintaining secure pipelines
Summary and Next Steps
Pré requis
- An understanding of the DevOps lifecycle and CI/CD pipelines
- Basic knowledge of application security principles
- Familiarity with code repositories and infrastructure-as-code tools
Audience
- Security-focused DevOps teams
- DevSecOps engineers and cloud security specialists
- Compliance and risk management professionals
14 Heures