Plan du cours
Introduction to AWS Cloud9 for Data Science
- Overview of AWS Cloud9 features for data science
- Setting up a data science environment in AWS Cloud9
- Configuring Cloud9 for Python, R, and Jupyter Notebook
Data Ingestion and Preparation
- Importing and cleaning data from various sources
- Using AWS S3 for data storage and access
- Preprocessing data for analysis and modeling
Data Analysis in AWS Cloud9
- Exploratory data analysis using Python and R
- Working with Pandas, NumPy, and data visualization libraries
- Statistical analysis and hypothesis testing in Cloud9
Machine Learning Model Development
- Building machine learning models using Scikit-learn and TensorFlow
- Training and evaluating models in AWS Cloud9
- Using SageMaker with Cloud9 for large-scale model development
Database Integration and Management
- Integrating AWS RDS and Redshift with AWS Cloud9
- Querying large datasets using SQL and Python
- Handling big data with AWS services
Model Deployment and Optimization
- Deploying machine learning models using AWS Lambda
- Using AWS CloudFormation to automate deployment
- Optimizing data pipelines for performance and cost-efficiency
Collaborative Development and Security
- Collaborating on data science projects in Cloud9
- Using Git for version control and project management
- Security best practices for data and models in AWS Cloud9
Summary and Next Steps
Pré requis
- Compréhension de base des concepts de science des données
- Maîtrise du langage de programmation Python
- Expérience avec les environnements cloud et les services AWS
Audience
- Data scientists
- Analystes de données
- Ingénieurs en apprentissage automatique
Nos clients témoignent (4)
La convivialité tout en apprenant
Didier Matagne - Agence du Numerique
Formation - AWS Lambda for Developers
Applications IoT
Palaniswamy Suresh Kumar - Makers' Academy
Formation - Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
Traduction automatique
C'est excellent d'avoir le cours sur mesure pour les domaines clés que j'ai soulignés dans le questionnaire pré-cours. Cela aide vraiment à aborder mes questions sur la matière et à s'aligner avec mes objectifs d'apprentissage.
Winnie Chan - Statistics Canada
Formation - Jupyter for Data Science Teams
Traduction automatique
The example and training material were sufficient and made it easy to understand what you are doing.
Teboho Makenete
Formation - Data Science for Big Data Analytics
Traduction automatique