Merci d'avoir envoyé votre demande ! Un membre de notre équipe vous contactera sous peu.
Merci d'avoir envoyé votre réservation ! Un membre de notre équipe vous contactera sous peu.
Plan du cours
Introduction to LangGraph and Graph Concepts
- Why graphs for LLM apps: orchestration vs. simple chains
- Nodes, edges, and state in LangGraph
- Hello LangGraph: first runnable graph
State Management and Prompt Chaining
- Designing prompts as graph nodes
- Passing state between nodes and handling outputs
- Memory patterns: short-term vs. persisted context
Branching, Control Flow, and Error Handling
- Conditional routing and multi-path workflows
- Retries, timeouts, and fallback strategies
- Idempotency and safe re-runs
Tools and External Integrations
- Function/tool calling from graph nodes
- Calling REST APIs and services within the graph
- Working with structured outputs
Retrieval-Augmented Workflows
- Document ingestion and chunking basics
- Embeddings and vector stores (e.g., ChromaDB)
- Grounded answering with citations
Testing, Debugging, and Evaluation
- Unit-style tests for nodes and paths
- Tracing and observability
- Quality checks: factuality, safety, and determinism
Packaging and Deployment Fundamentals
- Environment setup and dependency management
- Serving graphs behind APIs
- Versioning workflows and rolling updates
Summary and Next Steps
Pré requis
- An understanding of basic Python programming
- Experience with REST APIs or CLI tools
- Familiarity with LLM concepts and prompt engineering fundamentals
Audience
- Developers and software engineers new to graph-based LLM orchestration
- Prompt engineers and AI newcomers building multi-step LLM apps
- Data practitioners exploring workflow automation with LLMs
14 Heures