Formation Ollama Applications in Healthcare
Ollama is a lightweight platform for running large language models locally.
This instructor-led, live training (online or onsite) is aimed at intermediate-level healthcare practitioners and IT teams who wish to deploy, customize, and operationalize Ollama-based AI solutions within clinical and administrative environments.
Upon completing this training, participants will be able to:
- Install and configure Ollama for secure use in healthcare settings.
- Integrate local LLMs into clinical workflows and administrative processes.
- Customize models for healthcare-specific terminology and tasks.
- Apply best practices for privacy, security, and regulatory compliance.
Format of the Course
- Interactive lecture and discussion.
- Hands-on demonstrations and guided exercises.
- Practical implementation in a sandboxed healthcare simulation environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Plan du cours
Introduction to Ollama in Healthcare
- Understanding local LLM deployment
- Why healthcare benefits from on-device models
- Key features and limitations of Ollama
Installing and Configuring Ollama
- System requirements and setup
- Model selection and installation workflow
- Environment configuration for healthcare applications
Healthcare-Specific Use Cases
- Clinical documentation support
- Patient communication and summarization
- Workflow automation in hospitals and clinics
Customizing and Fine-Tuning Models
- Prompt engineering for healthcare scenarios
- Extending models with domain-specific data
- Managing performance and inference quality
Integration with Healthcare Systems
- APIs and interoperability considerations
- Connecting to EHR and HIS environments
- Automation and scripting for daily operations
Data Privacy, Security, and Compliance
- Local model advantages for data protection
- HIPAA and regional regulatory considerations
- Secure deployment patterns
Testing, Validation, and Quality Assurance
- Assessing model accuracy and reliability
- Evaluating clinical safety and risk
- Continuous improvement strategies
Operational Deployment and Maintenance
- Monitoring performance and usage
- Upgrading models and dependencies
- Troubleshooting common issues
Summary and Next Steps
Pré requis
- An understanding of clinical workflows
- Experience with data analysis or healthcare IT systems
- Familiarity with basic AI concepts
Audience
- Healthcare professionals
- Medical IT staff
- Analysts and technical administrators
Les formations ouvertes requièrent plus de 3 participants.
Formation Ollama Applications in Healthcare - Réservation
Formation Ollama Applications in Healthcare - Enquiry
Ollama Applications in Healthcare - Demande d'informations consulting
Demande d'informations consulting
Cours à venir
Cours Similaires
Intelligence Artificielle Agente dans les Soins de Santé
14 HeuresL'IA agente est une approche où les systèmes d'IA planifient, raisonnent et prennent des actions utilisant des outils pour accomplir des objectifs dans le cadre de contraintes définies.
Cette formation en présentiel dirigée par un instructeur (en ligne ou sur site) est destinée aux équipes de soins de santé et de données intermédiaires qui souhaitent concevoir, évaluer et gouverner des solutions d'IA agente pour des cas d'utilisation cliniques et opérationnels.
À la fin de cette formation, les participants seront en mesure de :
- Expliquer les concepts et contraintes de l'IA agente dans le contexte des soins de santé.
- Concevoir des flux de travail d'agents sécurisés avec planification, mémoire et utilisation d'outils.
- Construire des agents augmentés par la récupération sur des documents cliniques et des bases de connaissances.
- Évaluer, surveiller et gouverner le comportement des agents avec des barrières de protection et des contrôles d'intervention humaine.
Format du cours
- Conférence interactive et discussion animée.
- Laboratoires guidés et démonstrations de code dans un environnement de bac à sable.
- Exercices basés sur des scénarios sur la sécurité, l'évaluation et la gouvernance.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser.
AI Agents pour la Santé et les Diagnostics
14 HeuresCette formation en direct, dirigée par un formateur, à Canada (en ligne ou sur site) s'adresse aux professionnels de santé et développeurs d'IA de niveau intermédiaire à avancé qui souhaitent mettre en œuvre des solutions de santé pilotées par l'intelligence artificielle.
À la fin de cette formation, les participants seront capables de :
- Comprendre le rôle des agents d'IA dans la santé et les diagnostics.
- Développer des modèles d'IA pour l'analyse d'images médicales et les diagnostics prédictifs.
- Intégrer l'IA avec les dossiers de santé électroniques (EHR) et les flux de travail cliniques.
- Assurer la conformité aux réglementations en matière de santé et aux pratiques éthiques de l'IA.
L'IA et l'AR/VR dans les soins de santé
14 HeuresCe cours en présentiel (en ligne ou sur site) est destiné aux professionnels de santé intermédiaires qui souhaitent appliquer des solutions basées sur l'IA et la réalité augmentée/virtuelle (AR/VR) pour la formation médicale, les simulations chirurgicales et la réadaptation.
À la fin de ce cours, les participants seront capables de :
- Comprendre le rôle de l'IA dans l'amélioration des expériences AR/VR en santé.
- Utiliser l'AR/VR pour les simulations chirurgicales et la formation médicale.
- Appliquer les outils d'AR/VR à la réadaptation et au traitement des patients.
- Explorer les préoccupations éthiques et de confidentialité dans les outils médicaux assistés par l'IA.
Intelligence Artificielle pour la Santé utilisant Google Colab
14 HeuresCe cours en direct, encadré par un formateur (en ligne ou sur site), s'adresse aux scientifiques des données intermédiaires et aux professionnels de la santé qui souhaitent exploiter l'IA pour des applications avancées dans le secteur de la santé à l'aide de Google Colab.
À la fin de ce cours, les participants seront capables de :
- Mettre en œuvre des modèles d'IA pour la santé en utilisant Google Colab.
- Utiliser l'IA pour le modèle prédictif dans les données de santé.
- Analyser les images médicales avec des techniques pilotées par l'IA.
- Explorer les considérations éthiques dans les solutions de santé basées sur l'IA.
Intelligence Artificielle dans les Soins de Santé
21 HeuresCette formation en direct, dirigée par un formateur (en ligne ou sur place), s'adresse aux professionnels de santé et aux scientifiques des données de niveau intermédiaire qui souhaitent comprendre et appliquer les technologies d'intelligence artificielle dans les environnements de soins.
À la fin de cette formation, les participants seront capables de :
- Identifier les principaux défis du secteur de la santé auxquels l'IA peut répondre.
- Analyser l'impact de l'IA sur les soins aux patients, leur sécurité et la recherche médicale.
- Comprendre la relation entre l'IA et les modèles d'affaires dans le secteur de la santé.
- Appliquer des concepts fondamentaux de l'IA à des scénarios de soins de santé.
- Développer des modèles d'apprentissage automatique pour l'analyse des données médicales.
ChatGPT pour les soins de santé
14 HeuresCette formation en direct (en ligne ou sur site) est destinée aux professionnels de la santé et aux chercheurs qui souhaitent utiliser ChatGPT pour améliorer les soins aux patients, optimiser les flux de travail et améliorer les résultats en matière de santé.
À l'issue de cette formation, les participants seront capables de :
- Comprendre les fondamentaux de ChatGPT et ses applications dans le domaine de la santé.
- Utiliser ChatGPT pour automatiser les processus et interactions en matière de santé.
- Fournir des informations médicales précises et un soutien aux patients à l'aide de ChatGPT.
- Appliquer ChatGPT à la recherche médicale et à l'analyse.
Déploiement et Optimisation des Modèles de Langue Gros (LLM) avec Ollama
14 HeuresCette formation en Canada (en ligne ou sur site) est destinée aux professionnels de niveau intermédiaire qui souhaitent déployer, optimiser et intégrer des LLM en utilisant Ollama.
A l'issue de cette formation, les participants seront capables de :
- Mettre en place et déployer des LLMs en utilisant Ollama.
- Optimiser les modèles d'IA pour la performance et l'efficacité.
- Tirer parti de l'accélération GPU pour améliorer la vitesse d'inférence.
- Intégrer Ollama dans les flux de travail et les applications.
- Contrôler et maintenir les performances des modèles d'IA au fil du temps.
Intelligence Artificielle aux Bordures pour la Santé
14 HeuresCette formation en direct, animée par un formateur, à Canada (en ligne ou sur site) s'adresse aux professionnels de santé intermédiaires, aux ingénieurs biomédicaux et aux développeurs AI qui souhaitent exploiter l'Edge AI pour des solutions innovantes dans le domaine de la santé.
À la fin de cette formation, les participants seront capables de :
- Comprendre le rôle et les avantages de l'Edge AI dans le secteur de la santé.
- Développer et déployer des modèles AI sur des appareils IoT pour des applications médicales.
- Mettre en œuvre des solutions Edge AI dans les dispositifs portables et les outils diagnostiques.
- Concevoir et déployer des systèmes de surveillance des patients en utilisant l'Edge AI.
- Traiter les considérations éthiques et réglementaires dans les applications d'intelligence artificielle en santé.
Fine-Tuning Intelligence Artificielle pour la Santé : Diagnostic Médical et Predictive Analytics
14 HeuresCe cours en direct, dirigé par un formateur (en ligne ou sur place) s'adresse aux développeurs d'intelligence artificielle médicale et aux scientifiques des données de niveau intermédiaire à avancé qui souhaitent affiner les modèles pour le diagnostic clinique, la prédiction de maladies et la prévision des résultats des patients en utilisant des données médicales structurées et non structurées.
À l'issue de ce cours, les participants seront capables de :
- Affiner des modèles IA sur des jeux de données de santé tels que les EMR, les images médicales et les données temporelles.
- Appliquer l'apprentissage par transfert, l'adaptation du domaine et la compression du modèle dans un contexte médical.
- Traiter la confidentialité, le biais et la conformité réglementaire lors du développement des modèles.
- Déployer et surveiller les modèles affinés dans des environnements médicaux réels.
Generative AI et Prompt Engineering dans les soins de santé
8 HeuresL'IA générative est une technologie qui crée de nouveaux contenus tels que du texte, des images et des recommandations basées sur des prompts et des données.
Cette formation en direct animée par un formateur (en ligne ou sur site) s'adresse aux professionnels de santé débutants à intermédiaires qui souhaitent utiliser l'IA générative et le prompt engineering pour améliorer l'efficacité, la précision et la communication dans les contextes médicaux.
À la fin de cette formation, les participants seront capables de :
- Comprendre les fondamentaux de l'IA générative et du prompt engineering.
- Appliquer des outils d'IA pour optimiser les tâches cliniques, administratives et de recherche.
- Assurer une utilisation éthique, sûre et conforme de l'IA dans le domaine de la santé.
- Optimiser des prompts pour obtenir des résultats cohérents et précis.
Format du cours
- Cours interactif et discussions.
- Exercices pratiques et études de cas.
- Expérimentation pratique avec des outils d'IA.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser cela.
Intelligence Artificielle Générative dans les Soins de Santé : Transformer la Médecine et la Prestation des Soins aux Patients
21 HeuresCette formation en direct, animée par un formateur (en ligne ou sur site), s'adresse aux professionnels de santé, analystes de données et décideurs politiques de niveau débutant à intermédiaire qui souhaitent comprendre et appliquer l'intelligence artificielle générative dans le contexte de la santé.
À la fin de cette formation, les participants seront en mesure de :
- Expliquer les principes et les applications de l'IA générative dans le domaine de la santé.
- Identifier les opportunités d'utilisation de l'IA générative pour améliorer la découverte de médicaments et la médecine personnalisée.
- Utiliser des techniques d'IA générative pour l'imagerie médicale et le diagnostic.
- Évaluer les implications éthiques de l'IA dans les environnements médicaux.
- Développer des stratégies pour intégrer les technologies d'IA dans les systèmes de santé.
LangGraph dans la Santé : Orchestration des Flux de Travail pour les Environnements Régulés
35 HeuresLangGraph permet des workflows multi-acteurs et étatiques alimentés par des LLM avec un contrôle précis sur les chemins d'exécution et la persistance de l'état. Dans le secteur de la santé, ces capacités sont essentielles pour la conformité, l'interopérabilité et la création de systèmes de soutien à la décision qui s'intègrent aux workflows médicaux.
Cette formation en direct animée par un instructeur (en ligne ou sur site) est destinée aux professionnels intermédiaires et avancés souhaitant concevoir, mettre en œuvre et gérer des solutions de santé basées sur LangGraph tout en répondant aux défis réglementaires, éthiques et opérationnels.
À la fin de cette formation, les participants seront capables de :
- Concevoir des workflows spécifiques à la santé avec LangGraph en tenant compte de la conformité et de la traçabilité.
- Intégrer les applications LangGraph aux ontologies et normes médicales (FHIR, SNOMED CT, ICD).
- Appliquer les meilleures pratiques pour la fiabilité, la traçabilité et l'explicabilité dans des environnements sensibles.
- Déployer, surveiller et valider les applications LangGraph dans des environnements de production en santé.
Format du cours
- Cours interactif et discussions.
- Exercices pratiques avec des études de cas réelles.
- Mise en pratique dans un environnement de laboratoire live.
Options de personnalisation du cours
- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser cela.
Intelligence Artificielle Multimodale pour la Santé
21 HeuresCette formation en direct, dirigée par un formateur, à Canada (en ligne ou sur place) s'adresse aux professionnels de santé intermédiaires et avancés, aux chercheurs médicaux et aux développeurs AI qui souhaitent appliquer l'IA multimodale dans les diagnostics médicaux et les applications de soins de santé.
À la fin de cette formation, les participants seront en mesure de :
- Comprendre le rôle de l'IA multimodale dans les soins de santé modernes.
- Intégrer des données médicales structurées et non structurées pour des diagnostics pilotés par l'IA.
- Appliquer des techniques d'IA pour analyser des images médicales et des dossiers de santé électroniques.
- Développer des modèles prédictifs pour le diagnostic de maladies et les recommandations thérapeutiques.
- Implémenter la reconnaissance vocale et le traitement du langage naturel (NLP) pour la transcription médicale et l'interaction avec les patients.
Démarrer avec Ollama : Exécution de modèles d'IA locaux
7 HeuresCette formation en direct (en ligne ou sur site) et dirigée par un formateur s'adresse aux professionnels débutants qui souhaitent installer, configurer et utiliser Ollama pour exécuter des modèles IA localement.
À la fin de cette formation, les participants seront en mesure de :
- Comprendre les fondamentaux de Ollama et ses capacités.
- Configurer Ollama pour exécuter des modèles IA localement.
- Déployer et interagir avec des LLMs (Large Language Models) à l'aide de Ollama.
- Optimiser les performances et l'utilisation des ressources pour les charges de travail IA.
- Explorer les cas d'usage du déploiement local de l'IA dans divers secteurs.
Ingénierie des Prompt pour les Soins de Santé
14 HeuresCette formation en direct, dirigée par un formateur (en ligne ou sur place), s'adresse aux professionnels de la santé et développeurs d'IA de niveau intermédiaire qui souhaitent utiliser les techniques d'ingénierie des prompts pour améliorer les flux de travail médicaux, l'efficacité de la recherche et les résultats des patients.
À la fin de cette formation, les participants seront capables de :
- Comprendre les fondamentaux de l'ingénierie des prompts en santé.
- Utiliser des prompts IA pour la documentation clinique et les interactions avec les patients.
- Mettre à profit l'IA pour la recherche médicale et le résumé de la littérature.
- Améliorer la découverte de médicaments et la prise de décision clinique grâce aux prompts pilotés par IA.
- Assurer la conformité aux normes réglementaires et éthiques en matière d'IA en santé.